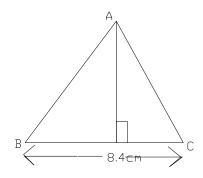
NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD MAY/JUNE 2005 NBC/NTC EXAMINATION **MATHEMATICS**

- Solve for x in 8^{3x} x 8^{-1} = 32 1(a)
- Simplifying without using tables, $\frac{\log 27}{\log 3}$ (b)

(a)
$$\frac{\text{Solution}}{2^{3(3x)} \times 2^{3(-1)}} = 2^{5}$$


$$\Rightarrow 3(3x) - 3 = 5$$

$$9x - 3 = 5$$

$$\therefore x = 8/9$$

(b)
$$\frac{\log 27}{\log 3} = \frac{\log 3^3}{\log 3} = \frac{3\log 3}{\log 3} = 3$$

- 2(a)
- The 6^{th} term of a G.P is 1215. If the common ratio is 3; find its 3^{rd} term. ABC is a triangle with BC = 8.4cm, \angle ADC = 90° and area 40.16cm². Find /AD/. (b)

(a)
$$\frac{\text{Solution}}{T_6 = \text{ar}^{n-1}} \implies a(3)^5 = 1215$$

$$a = \frac{1215}{243} = 5$$

$$\therefore 3^{\text{rd}} \text{ term} = 5 \times 3^2 = 45$$

Area of a triangle = $\frac{1}{2}$ x 8.4 x /AD/ (b) $= 40.16 \text{cm}^2$

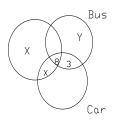
:./AD/=
$$\frac{40.16 \times 2}{8.4 \times 1}$$

= 9.56cm
Simplify $\frac{0.0054 \times 8.19}{0.000243}$, leaving your answer in standard form.

(b) A length of 8.85m is increased to 9.37m. Calculate the increase.

Solution

3(a)

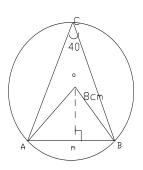

(a)
$$\frac{54 \times 10^{-3} \times 819 \times 10^{-2}}{243 \times 10^{-5}}$$

$$= 1.82 \times 10^{2}$$
or
$$\frac{0.054 \times 819}{0.00243} = \frac{0.44226}{0.00243} = 182$$

$$= 1.82 \times 10^{2}$$

(b) increase in length =
$$(9.37 - 8.85)$$
m = 0.52 m percentage increase = $\frac{0.52}{8.85}$ x 100 $\frac{0.52}{8.85}$ = $5.876\% = 5.88\%$ approx.

4. 65 of the workers in a certain company in Lagos were interviewed about the means of transportation to work on a particular day. Each of them used one or more of the means shown on the Venn diagram below.

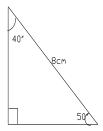

Given that 37 workers used Bike and 20 used Bus, find

- (a) x
- (b) the number of workers who used cars only

4(a)
$$x + x + 5 + 8 = 37$$

2x = 24

$$\therefore x = 12$$
(b) $y = 20 - (5+8+3) = 4$
 $n \text{ (Bike } \cup \text{Bus)} = 12+12+5+8+3+4 = 44$
 $n \text{ (cars only)} = 65-44$
 $= 21$


- 5. The centre of the circle ABC is O. If its radius is 8cm and < ACB = 40° , Calculate the length of the
 - (a) Chord AB
 - (b) Perpendicular OM

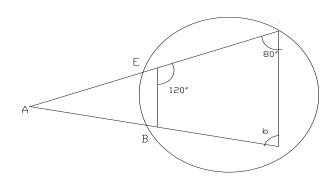
Solution

$$\overline{\text{AOB}} = 2 < \text{ABC} = 2 \times 40^{\circ} = 80^{\circ}$$

 $< \text{BOM} = \frac{1}{2} \text{ of } 80^{\circ} = 40^{\circ}$
Considering triangle OMB,

$$/MB/ = 8 \sin 40^{\circ}$$

or $8 \cos 50^{\circ} = 5.142 cm$


Length of the chord AB =
$$2/MB/ = 2 \times 5.142$$

= $10.28cm = 10.3cm$ approx

(b)
$$/OM/= 8 \cos 40^{\circ} \text{ or } 8 \sin 50^{\circ}$$

=6.128cm = 6.13cm = 6.1cm

ALITER: Using Pythagoras' rule

$$OM = \sqrt{(OB)^2 - (MB)^2} = 6.1 \text{cm}$$

6(a) Find the value of a and b in the figure below

(b) Five years ago, a father was twice as old as his son. In 4 years' time, the sum of their ages will be 78. Find their present ages.

Solution(a) $b = 180^{\circ} - 120^{\circ} = 60^{\circ}$ (opposite angles in cyclic quad are supplementary) Considering Δ ACD,

$$a + b + 80^{\circ} = 180^{\circ} (\angle s \text{ in a } \Delta)$$

 $\therefore a = 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ}$

(b) Let the present ages be son, x yrs, father y yrs,

then 5 years ago, we have

$$y - 5 = 2(x-5)$$

$$\Rightarrow 2x - y = 5 \tag{1}$$

in 4 years' time, we have

$$(x+4) + (y+4) = 78$$

$$\Rightarrow$$
 x+y = 70 _____(2)

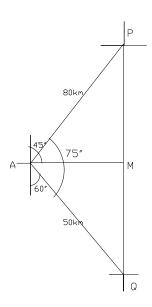
From (1) and (2), we have, x = 25 and y = 45

 \therefore their present ages are son = 25 yrs, father = 45 years

(a) <u>ALITER</u>

5 year ago if son is y year's old father was 2y years old. In 4 years time, son will be (y+5+4) yrs

father =
$$(2y+5+4)$$
 yrs


which gives
$$y + 9 + 2y + 8 = 78$$
; $y = 20$

the present ages are y + 5 = 25yrs and 2y + 5 = 45yrs for the son and father respectively.

- 7. The bearings of points P and Q from 045° and 120° respectively. If the distance AP is 80km and AQ is 50km, calculate the:
 - (a) distance between P and Q to 3 significant figures
 - (b) bearing of Q from P, to the nearest degree.
 - (c) how far east of A is Q?

Solution

(a)

Correct diagram with at least three of 50km, 80km, 45 $^{\circ}$, 60 $^{\circ}$ or 120 $^{\circ}$ shown <PAQ = 75 $^{\circ}$

$$(PQ)^2 = 80^2 + 50^2 - (50) \cos 75^\circ = 6829.6$$

 $\therefore PQ = \sqrt{6829.6} = 82.6 \text{km}$

Solution

7(b)
$$\overline{\sin \langle APQ = 50 \times \sin 75}^{\circ} = 0.5847$$

 82.6
 $\langle APQ = \sin^{-1} 0.5847 = 35.78^{\circ}$
 $\langle QPN = 45^{\circ} - 35.78^{\circ} = 9.22^{\circ}$
The bearing of Q from P = $180^{\circ} + 9.22^{\circ}$
 $= 189^{\circ}$ (to the nearest degree)
 $\therefore \langle QAM = 30^{\circ}$
(c) A is 50 x Cos 30° = 43.3km east of Q

- (c) A is $50 \times \cos 30^{\circ} = 43.3 \text{km}$ east of Q
- 8(a) The table below shows the scores of a group of 40 students in a test.

Score (x)	1	2	3	4	5	6	7	8	9	10
Frequency (f)	3	4	5	7	8	6	3	2	1	1

Find the (i) mode, (ii) median and (iii) mean

- (b) The 2nd and 4th terms of a G.P. are 10 and 40 respectively. Find the
 - (i) common ratio
 - (ii) first term
 - (iii) 8th term of the series

Solution

(a) (i) mode = 5
(ii) median =
$$\frac{5+5}{2}$$
 = 5

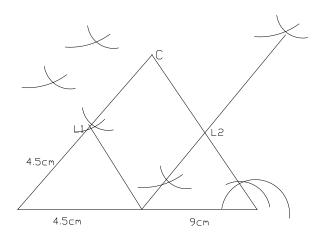
(iii)
$$\Sigma fx = 3 + 8 + 15 + 28 + 40 + 36 + 21 + 16 + 9 + 10$$

= 186
mean = $\frac{186}{40}$ = 4.65

(b)
$$ar^{2-1} = 10 = ar = 10$$

 $ar^{4-1} = 40 = ar^3 = 40$
 $\Rightarrow r^2 = \frac{40}{10} = 4$

(i)
$$\therefore r = \pm 2, r = 2 \text{ or } -2$$


(ii) Hence
$$2a = \pm 10 \Rightarrow a = \pm 5$$

(iii)
$$T_8 = + 5 \times 2^7 = 640$$

- 9 Using a ruler and a pair of compasses only construct:
- (a) A triangle ABC such that /AB/=9cm, $\angle ABC = 60^{\circ}$ and $\angle ACB = 45^{\circ}$.
- (b) (i) Construct the locus l_1 of points 4.5cm from A.
 - (ii) Construct the locus l_2 of points equidistant from B and C to intersect l_1 at x_1 and x_2 measure $/x_1x_2/$.

Solution

(a) $\overline{\text{Drawing}}$ a side 9cm long constructing angle 60°, angle 45° measuring angle BAC = 76° completing the triangle ABC.

(b) (i) Constructing l_1 4.5cm from A (ii) Constructing l_2 of points equidistant from B and C to intersect l_1 at x_1 and x_2

measuring $/x_1x_2/=8.5$ cm; (± 0.1 cm) or its equivalent.

- 10(a) A bucket is 28cm in diameter at the top, 18cm in diameter at the bottom and 20cm deep. Find the capacity, in litres, of the bucket (take $\pi = 3.142$)
 - (b) The hypotenuse of a right angled triangle is 17cm and one of the angles is 43 °, find the
 - (i) third angle
 - (ii) side opposite the smallest angle.

Solution

(a) Let the height of the smaller cone be h cm then, we have $\frac{h}{20+h} = \frac{9}{14}$

$$\Rightarrow 14h = 180 + 9h$$
$$\therefore h = 36$$

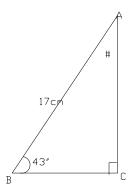
Volume of the small cone = $\frac{1}{3}$ x 3.142 x 9² x 36

 $= 3054.02 \text{cm}^3$

Volume of the big cone = $\frac{1}{3}$ x 3.142 x 14² x 56

 $= 11495.53 \text{cm}^3$

Volume of the bucket in litres = 11495.53 - 3054.02


 $= 8441.51 \text{cm}^3$

Capacity of the bucket in litres = 8.44 litres or 8.4 litres.

We can also get the volume if we use $\underline{\pi}(r^2H - r^2h)$

3

Substituting for R, H, r and h, we get 8.44 litres 3^{rd} angle $\emptyset = 180^{\circ}$ - $(90^{\circ}+43^{\circ})=47^{\circ}$

AC is opposite the smallest angle

Hence AC = $17 \times \sin 43^{\circ}$

or AC = $17 \times \cos 47^{0}$

= 11.594cm

or = 11.59cm

11(a) The sum to nth term of an AP is given by

 $S = \underline{n} [a + (n-1) d]$, where a =first term

d = common difference

- (i) make d the subject of the formula
- (ii) Hence calculate the common difference of an AP whose sum is 338, n = 13 and a = 5.
- (b) The angles of a polygon are $(x-10)^0$, x^0 , x^0 , $(x+20)^0$ and $(x+30)^0$. Find the value of x^0 .

Solution

$$S = n(a+(n-1)d)$$

Removing the fraction and brackets to get $2s = na + n^2d$ - nd Isolating d, we get

$$d(n^2-n) = 2s - na$$

$$\therefore d = \frac{2s - na}{n^2 - n}$$

(ii)
$$d = \frac{2s - na}{n^2 - n} = \frac{2(338) - 13(5)}{13^2 - 13}$$

= $\frac{611}{156} = 3.92$

(b) The polygon has 5 sides

sum of interior angles = $3 \times 180^{\circ} = 540^{\circ}$

$$(x-10)^{\circ} + x^{\circ} + x^{\circ} + (x+20)^{\circ} + (x+30)^{\circ} = 540^{\circ}$$

$$5x + 40^{\circ} = 540^{\circ}$$

$$5x = 500^{\circ}$$

$$x = 100^{\circ}$$

- 12(a) An article costing 432.50 is sold for a gain of $13\frac{1}{2}$. Find the selling price.
 - (b) Find the simple interest on 4500.00 in $2\frac{1}{2}$ years at 4% per annum.
 - (c) A businessman borrowed ₩200,000 from a bank for 3 years at 5% compound interest.
 - (i) Calculate the interest on the loan at the end of the period.
 - (ii) If he repays ₩230,000 at the end of the 3 years, how much does he still owe?

Solution

(a) Cost price of the article: 100% = 432.50

Selling price of the article $113\frac{1}{2}\% = \frac{113.5}{133} \times 32.50$

(b) S.I =
$$\frac{PTR}{100}$$
 = $\frac{4500 \times 5 \times 4}{100 \times 2}$

$$=$$
 450.00

(c) Interest at the end of 1st year = $\frac{1200,000 \times 1 \times 5}{100}$

Interest at the end of 2^{nd} year = $210,000 \times 1 \times 5$

$$= 10,500.00$$

Interest at the end of 3^{rd} year = $\frac{100}{100}$

(i) Total interest owed at the end of 3rd year

$$=$$
 $4200,000 \left(1 + \frac{5}{100}\right)^3 = 4231,525.00$

Total interest = \mathbb{N} (231,525 – 200,000) = \mathbb{N} 31,525.00

ALITER

- (i) Total interest = $\Re(10,000 + 10,500 + 11,025) = \Re(31,525.00)$
- (ii) Amount still owed = (231,525 230,000)= \$1,525.00
- 13(a) A trader allows a discount of $33\frac{1}{3}$ % on his marked prices. What should be the marked prices of article he wishes to receive \$500.00?
 - (b) The prices of kerosene per litre on the first week of each of the 12 months of the year are as given in the table below.

Month	Jan.	Feb.	March	April	May	June	July	Aug.	Sept	Oct	Nov	Dec.
Price	18	21	25	30	40	52	48	50	55	43	26	18

Find the three month moving averages for the period.

Solution

(a) Selling price less discount: $66 \frac{2}{3}\% = \$500$

Marked price:
$$100\% = \frac{100}{66} \times 500$$

$$= 749.96 =$$
\frac{1}{1}750 approx

(b) Moving averages: $\frac{18 + 21 + 25}{3} = 21.33$

$$\frac{21+25+30}{3} = 25.33, \frac{25+30+40}{3} = 31.67$$

$$\frac{30+40+52}{3} = 40.67, \frac{40+52+48}{3} = 46.67$$

$$\frac{52+48+50}{3} = 50.00, \, \frac{48+50+55}{3} = 51$$

$$\frac{50+55+43}{3} = 49.33, \frac{55+43+26}{3} = 41.33$$

$$\frac{43+26+18}{3} = 29.00$$

14(a) A man's salary is 298,886.40 per annum. Before receiving his salary, the employer makes the following deductions of the salary less personal allowance

If his annual personal allowances is ₩108,110.40

Calculate:

- (i) his monthly income tax
- (ii) the net monthly take home pay.
- (b) A bankrupt's assets realize ₹5000.00 and his liabilities are ₹8000.00
 - (i) What dividend will he pay?
 - (ii) How much will be paid to a creditor for \$600.00?

Solution

(a) Salary – Personal allowances = \$ (298,886.40 – 108,110.40)

(i) Monthly income tax = $\frac{190,776}{100}$ x $\frac{1}{12}$

=₩158.98

(ii) Gross monthly salary = \$298,886.4

$$= 824,907.20$$

monthly deductions: FHS: 2% of ₩24,907.20

monthly union due = 2% of $\aleph 24,907.20$

monthly tax deduction: 1% of ₩24907.21

$$= 8249.07$$

monthly total deductions = $\frac{1}{8}$ (622.68 + 498.14 + 249.07)

Net monthly pay = (24,907.40 - 1369.89)

(b) (i) Dividend = $\$5,000 \times 100k$

(ii) To a creditor for \aleph 600 he pays $\underline{63}$ x \aleph 600

$$=$$
 \{\}378.00

15(a) Find the weighted mean of 15,20,25,30, if they are assigned weightings of 2,1,3,4 respectively.

- (b) A man bought 23 crates of bottled drink at ₩310.00 per crate. There were 24 bottles per crate and each bottle was sold for ₩15. If two bottles per crate got broken during sales, calculate the following:
 - (i) cost price of the 23 crates
 - (ii) percentage profit per crate.

Solution

(a) weighted mean =
$$(2 \times 15) + (1 \times 20) + (3 \times 25) + (4 \times 30)$$

 $2 + 1 + 3 + 4$
= $275 = 27.5$

(b) (i) Cost price of 23 crates = 23×4310 = 47130.00

No of bottles sold in a crate = 22

Selling price of a crate = $22 \times 15 = 10.00$

Profit on a crate = \$330.00 - \$310.00

(ii) Percentage profit per crate

$$= \frac{20}{310} \times 100$$

$$= 6.45\% = 6.5\% \text{ approx.}$$