FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.

PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in $1\frac{1}{2}$ hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

Pure Mathematics	-	30 questions
Statistics and probability	-	4 questions
Vectors and Mechanics	-	6 questions

PAPER 2: will consist of two sections, Sections A and B, to be answered in $2\frac{1}{2}$ hours for 100 marks.

Section A will consist of eight compulsory questions that are elementary in type for 48 marks. The questions shall be distributed as follows: Pure Mathematics - 4 questions Statistics and Probability - 2 questions

Vectors and Mechanics - 2 questions

Section B will consist of seven questions of greater length and difficulty put into three parts: Parts I, II and III as follows:
Part I: Pure Mathematics - 3 questions
Part II: Statistics and Probability - 2 questions
Part III: Vectors and Mechanics - 2 questions
Candidates will be required to answer four questions with at least one from each part for 52 marks.

SAMPLE QUESTIONS

PAPER 1 (OBJECTIVES)

- 1. Find the equation of the line joining points (8, 1) and (-3, 4).
 - A. 3x 11y 35 = 0
 - B. 3x 11y + 35 = 0
 - C. 3x + 11y 35 = 0
 - D. 3x + 11y + 35 = 0
- 2. The sum of the first and sixth terms of an Arithmetic progression (A.P.) is 21. If the first term is 3, find the eighth term.
 - A. 24B. 27C. 30D. 33
- 3. If α and β are the roots of the equation $2x^2 5x + m = 0$, where m is a constant, find $(\alpha^2 + \beta^2)$ in terms of m.
 - A. $\frac{25}{4} + 2m$ B. $\frac{25}{4} + m$ C. $\frac{25}{4} - 2m$ D. $\frac{25}{4} - m$
- 4. Given that $y = \cos^2 x$, find $\frac{dy}{dx}$.
 - A. $-\sin^2 x$
 - B. $-\cos x \sin x$
 - C. -2cosx sinx
 - D. $-2\sin^2 x$

- 5. The position vectors of points P, Q and R are $\mathbf{p} = 4\mathbf{j}$, $\mathbf{q} = (4\mathbf{i} + 10\mathbf{j})$ and $\mathbf{r} = (k\mathbf{i} + 8\mathbf{j})$ respectively, where k is a constant. If $\angle PQR = 90^{\circ}$, find the value of k. A. 7
 - B. 1
 - C. -1
 - D. -7

PAPER 2

(ESSAY)

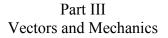
SECTION A

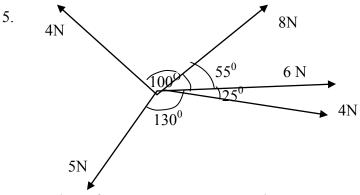
- 1. Given that * is a binary operation defined on R, the set of real numbers by
 - $x^*y = \frac{x^2}{x+y}$, where x, $y \in \mathbb{R}$.
 - (a) evaluate (2 * 3) * 5.
 - (b) If $(x + 1) * (x + 2) = \frac{1}{3}$, find the value of x.
- 2. The marks scored by forty candidates in an examination are shown in the table.

Marks	1	2	3	4	5	6	7	8	9
Number of candidates	2	3	m	8	10	5	3	3	n

If the mean of the distribution is 4.725, find the values of m and n.

SECTION B


Part I (Pure Mathematics)


3. Use the trapezium rule, with ordinates at x = 1, 2, 3, 4 and 5, to calculate, correct to two decimal places, an approximate value for

$$\int_{1}^{5} (2x + 8x^{-2}) \, \mathrm{d}x.$$

Part II (Statistics and Probability)

- 4. The deviations from 10 of a given set of numbers are 2, 1, 0, -4, -5,
 - 1, 2 and 7. Find the:
 - (i) mean;
 - (ii) median;
 - (iii) standard deviation of the numbers.

Coplanar forces 4N, 8N, 6N, 4N and 5N act at a point as shown in the diagram. If the 6N force act in the direction 090° , calculate the magnitude of the resultant force.