FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.
PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in $1 \frac{1}{2}$ hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

Pure Mathematics - 30 questions
Statistics and probability - 4 questions
Vectors and Mechanics - 6 questions
PAPER 2: will consist of two sections, Sections A and B, to be answered in $2 \frac{1}{2}$ hours for 100 marks.

Section A will consist of eight compulsory questions that are elementary in type for 48 marks. The questions shall be distributed as follows:

Pure Mathematics	-	4 questions
Statistics and Probability	-	2 questions
Vectors and Mechanics	-	2 questions

Section B will consist of seven questions of greater length and difficulty put into three parts:
Parts I, II and III as follows:
Part I: Pure Mathematics - 3 questions
Part II: Statistics and Probability - 2 questions
Part III: Vectors and Mechanics - 2 questions
Candidates will be required to answer four questions with at least one from each part for 52 marks.

SAMPLE QUESTIONS

PAPER 1 (OBJECTIVES)

1. Find the equation of the line joining points $(8,1)$ and $(-3,4)$.
A. $3 x-11 y-35=0$
B. $3 x-11 y+35=0$
C. $3 x+11 y-35=0$
D. $3 x+11 y+35=0$
2. The sum of the first and sixth terms of an Arithmetic progression (A.P.) is 21. If the first term is 3 , find the eighth term.
A. 24
B. 27
C. 30
D. 33
3. If α and β are the roots of the equation $2 \mathrm{x}^{2}-5 \mathrm{x}+\mathrm{m}=0$, where m is a constant, find $\left(\alpha^{2}+\beta^{2}\right)$ in terms of m.
A. $\frac{25}{4}+2 \mathrm{~m}$
B. $\frac{25}{4}+\mathrm{m}$
C. $\frac{25}{4}-2 \mathrm{~m}$
D. $\frac{25}{4}-\mathrm{m}$
4. Given that $\mathrm{y}=\cos ^{2} \mathrm{x}$, find $\frac{d y}{d x}$.
A. $-\sin ^{2} \mathrm{x}$
B. $-\cos x \sin x$
C. $-2 \cos x \sin x$
D. $-2 \sin ^{2} x$
5. The position vectors of points P, Q and R are $\mathbf{p}=4 \boldsymbol{j}, \mathbf{q}=(4 \boldsymbol{i}+10 \boldsymbol{j})$ and $\mathbf{r}=(\mathrm{ki}+$ $8 j$) respectively, where k is a constant. If $\angle P Q R=90^{\circ}$, find the value of k.
A. 7
B. 1
C. -1
D. -7

PAPER 2

(ESSAY)

SECTION A

1. Given that * is a binary operation defined on R , the set of real numbers by $\mathrm{x}^{*} \mathrm{y}=\frac{x^{2}}{x+y}$, where $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.
(a) evaluate $(2 * 3) * 5$.
(b) If $(x+1) *(x+2)=\frac{1}{3}$, find the value of x.
2. The marks scored by forty candidates in an examination are shown in the table.

Marks	1	2	3	4	5	6	7	8	9
Number of candidates	2	3	m	8	10	5	3	3	n

If the mean of the distribution is 4.725 , find the values of m and n.

SECTION B

Part I

(Pure Mathematics)
3. Use the trapezium rule, with ordinates at $x=1,2,3,4$ and 5 , to calculate, correct to two decimal places, an approximate value for

$$
\int_{1}^{5}\left(2 x+8 x^{-2}\right) d x
$$

Part II
 (Statistics and Probability)

4. The deviations from 10 of a given set of numbers are $2,1,0,-4,-5$, - 1, - 2 and -7 . Find the:
(i) mean;
(ii) median;
(iii) standard deviation of the numbers.

Part III
Vectors and Mechanics

5.

Coplanar forces $4 \mathrm{~N}, 8 \mathrm{~N}, 6 \mathrm{~N}, 4 \mathrm{~N}$ and 5 N act at a point as shown in the diagram. If the 6 N force act in the direction 090°, calculate the magnitude of the resultant force.

