110 – INSTRUMENT MECHANICS WORK

EXAMINATION STRUCTURE

The trade consists of the following trade related courses:

191 - General Metal Work

193 - Building/Engineering Drawing

194 - Basic Electricity

The trade will also be examined under the following components or subjects groupings:

1. 111 – Mechanical/Pneumatic Instruments (CIM 11, 15 & 18)

2. 112 - Electrical/Electronic Instruments (CIM 12, 13 & 14)

EXAMINATION SCHEME

111 - Mechanical/Pneumatic Instruments

The examination will comprise of two papers:

111-1 – PAPER I: This will consists of two sections, viz:

SECTION A: OBJECTIVE: this will be forty (40) multiple choice questions. Candidates will be required to answer all in 40 minutes. This section carries forty (40) marks.
SECTION B: ESSAY: this will be a written paper of seven (7) questions. Candidates are to answer five (5) questions in 2 hours. This Section carries sixty (60) marks.

111-2 – PAPER II: PRACTICAL: This paper will consists of two (2) practical/experimental questions and candidates are to answer all. The paper which is of three (3) hours duration carries 100 marks.

112 - Electrical/Electronic Instruments

This subject grouping consists of two papers:

112-1 – PAPER I :	This will consists of two sections, viz:
	 SECTION A: OBJECTIVE: this will be forty (40) multiple choice questions. Candidates will be required to answer all in 40 minutes. This section carries forty (40) marks. SECTION B: ESSAY: this will be a written paper of seven questions. Candidates are to answer five questions in 2 hours. This Section carries sixty (60) marks.

112-2 PAPER II: PRACTICAL: This paper consists of three (3) practical/experimental questions and candidates are to answer all in three (3) hours; and it carries 50 marks.

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
1.	Safety Precaution		Demonstrate the use of fire
	1. Name three elements	1. Safety precaution	fighting equipment.
	required to cause the	a. Labour safety techniques.	
	existence of fire, the	b. Elements that cause the existence of	
	common causes of fire	fire e.g. heat, oxygen and fuel.	
	accidents in industry and	c. Common causes of fire accidents in	
	state the method of fire	industry e.g. Electrical (short	
	fighting and fire	circuit); Smoking/Naked Flame;	
	prevention.	Explosion etc.	
	2. Demonstrate the use of	d. Personal safety wears e.g. Foot	
	the fighting equipment	Wear: Goggles: Apron: Helmets:	
	and apply safety wears	Gas Masks: Ear Muffs/Plugs etc	
	required on different jobs.	e. Major hazards in Industry and their	
	3. Identify common	causes e.g. electrical and toxic	
	electrical hazards. Some	materials e.g. SO ₂ , H ₂ S, CI ₂ ,	
	toxic fumes and gases	Asbestos Dust. Tetra Ethyl Lead	
	found in industry and	Fumes (Tcl) etc	
	their causes	f Common electrical hazards in	
		industry	
		i Shock - caused by exposed	
		live wires	
		ii Burns cause by sparks and	
		exposed live wires	
		iii Explosion caused by sparks	
2	Pressure	1 Definition of pressure as force/unit area	
2.	1 Define pressure and the	i.e. F/A and type used in pressure	
	types used in pressure	measurements: e.g. atmospheric pressure	
	measurements	gauge pressure, absolute pressure	
	2 Select name identify and	differential pressure, vacuum pressure	
	explain with the aid of	2 Pressure Measuring Instruments e.g.	
	labeled sketches the	2. Resource Measuring instruments e.g.	
	working principle of	Bourdon Tube Gauge Dianhragm Gauge	
	nressure measuring	Manometer Compound Gauge	
	devices	 Manometer, Compound Gauge. Pressure Transmission e.g. Hydraulic 	
	3 Trouble shoot pressure	Transmission Pneumatic Cylinders	
	instrument measuring	4 The working principles components and	
	instrument, transmitting	functions of the components of the	
	pressure measure	various types of pressure measuring	
	instruments and common	instrument	
	methods of pressure	5 Common types of pressure	
	transmission in industry.	measuring/calibrating devices e.g	
	4. Calibrate and read	Pressure Gauges Bourdon Tube Bellow	
	pressure measuring	Dianhragm etc.	
	instruments taking into	6 Reading and recording of pressure	
	consideration the	measuring instruments	
	environmental effects on	7 Bourdon tube gauges e g C-type helical	
	the standard instrument.	and spiral types.	
	5. Disassemble service and	8 Trouble-=shooting in pressure	
	reassemble pressure	measuring/indicating instruments e g DP	
	measuring instrument	cell and methods of rectification	
	with the aid of relevant	con and methods of rectification.	
	manual making sure that		
	component parts are		
	replaced in their correct		
	replaced in their context	l	

111 – MECHANICAL/PNEUMATIC INSTRUMENTS (CIM 11,15 & CME 18)

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	positions.		
	6. Couple or uncouple		
	pressure instrument and		
	replaced damaged parts		
	with the appropriate part		
	number in the catalogue.		
3.	Flow and Flow Measuring	1. Definition of flow rate i.e. $q = Q/t$ where	
	<u>Instrument</u>	q = flow rate in cubic meter/hour; $Q =$	
	1. Define flow rate and	total flow in cubic meter units, $t = time$ in	
	explain the working	hours and terms used in flow rate	
	principles of flow rate	measurement.	
	meter and totalizer with	2. Instruments used for measuring flow rate	
	the aid of labeled	e.g. Turbine Flow meter; Rotating Vane	
	sketches.	Meters (assorted); Magnetic Flow Meter;	
	2. Select the instruments	Rota Meter; D.P. Cell (incorporating	
	used for flow rate, total	office plate, square root extractor and	
	flow and explain the	flow indicator); Pilot Tube; Parshall	
	difference between the	flume; Venturi Meter (flow tubes).	
	function of the flow rate	3. The totalizer/integrators as an instrument	
	2 Calibrata read and record	for measuring total flow.	
	5. Calibrate, lead and lecold	4. Types of instrument used for measuring	
	indicated on flow rate and	Dump Valumatria Matery Datating Vanag	
	total flow in units	Pump, volumetric Meter, Kolating valles	
	indicated on totalizer	- retion Station rump Meter.	
	4 Disassemble reassemble	flow rate meters	
	trouble shoot repair and	6 Calibration of flow rate instrument	
	service given measuring	Weight Meter: V-Notch: Meter Provers	
	instruments with the aid	7 Trouble shooting and methods of	
	of relevant manuals	rectification e.g. Rotating Vane Meter;	
	noting the position of the	Magnetic Flow Meter; D.P. Cell.	
	components and taking	8. Maintenance of flow rate meters by:	
	care that parts are fixed in	a. changing of damaged parts	
	their correct positions	b. cleaning of parts	
	5. Couple and uncouple flow	 c. lubrication of moving parts. 	
	measuring instruments to		
	or from lines.		
4.	Level and Level Measuring	1. What are levels and the units for level	The level of measuring
	Instruments	measurement.	devices should be displayed.
	1. Explain what is meant by	2. Instruments for the measurement of levels	
	level with respect to	e.g. Dipstick, Sight Glass, Float Device,	
	reference point of datum	Content Gauge, D. P. Cell	
	line.	3. Working principles of the level measuring	
	2. Explain the working	A Maintananaa af laval maaguring	
	principles of the level	4. Maintenance of level measuring	
	and state their units	5 Installation of level meters	
	2 Read and record levels	6 Servicing of sight glass and float device	
	indicated on the	e g Changing of damaged components	
	instruments with the	Cleaning of Parts: Lubricating Moving	
	annronriate units and state	Parts	
	the limitations of each of	7. Limitation of level measuring instruments	
	the level measuring	e.g. Dipstick cannot be used in	
	instrument.	pressurized vessel; Sight glass is fragile	
	4. Install, disassemble,	and measurable range is limited; Float	

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	assemble and service	device is limited by friction.	
	sight glass and float		
	device on appropriate		
	equipment and noting the		
	relative position of		
	components parts.		
5.	Temperature measuring	1. Definition of temperature and its units	Calibrate a simple mercury
	<u>Instrument</u>	Fahrenheit etc.	thermometer, a thermoicouple,
	1. Define temperature, state	2. Temperature measuring instruments e.g.	a resistance thermoimeter
	their units and convert	Mercury, gas thermometer, resistance	using ice bath and steam,
	one unit of temperature to	thermometer etc. components and	taking into consideration that
	another.	limitations.	the boiling point of water at
	2. Explain working	3. Working principles of temperature	sea levels is 100° centigrade.
	monsuring instruments	A Deading and recording of temperature	
	2 Calibrate thermometer	 Keauing and recording or temperature. Calibration of temperature measuring 	
	5. Calibrate thermometer,	instrument	
	resistance thermometer	6 Working principles and application of the	
	using ice bath and steam.	temperature transmitter e.g. control of	
	note the resistance of	flow of fuel to heaters etc.	
	melting point of ice and	7. Installation of temperature measuring	
	boiling point of water.	devices.	
	(Boiling point of water at		
	sea level is 100°C)		
	4. Explain the working		
	principles of a		
	temperature transmitter		
	with the aid of schematic		
	diagram and give two		
	examples of its	5	
	application.		
	5. Ilistali temperature measuring devices read	\sim	
	and record value with		
	units on given		
	instruments.		
6.	Speed and Speed Measuring	1. Definition of speed as distance or angle	Observe safety rules.
	Instruments	covered per units time:	
	1. Define speed, velocity	a. $V = S/t$ where $V = linear$ speed in	
	and frequency with their	meters or feet/second $S = distance$ in	
	units, convert frequency	meters or feet. $t = time in seconds.$	
	to angular velocity and	b. $W = Q/t$ where $W =$ angular speed	
	linear velocity.	in radius $Q =$ angle in radius t =-	
	2. Describe instruments used	time in seconds.	
	for speed measurement,	2. Velocity as speed in a given direction and	
	discuss their application,	frequency as number of revolutions or	
	their working principles	cycle/second their respective units of	
	(indicating the nature of	2 Palationship batwaan speed velocity and	
	(indicating the nature of speed massured)	5. Relationship between speed, velocity and frequency and methods of conversion	
	3 Construct calibrate read	Conversion of formula: $w = 2\pi F$ where f	
	and record speed	= frequency in Hertz or cycle per second	
	measuring device	4 Speed measuring instruments working	
	observing safety rules.	principles, constructional details and	
	4. Dismantle and reassemble	applications e.g. D.P. Cell; Pilot Tube,	

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	gas and air measuring devices noting the relative positions of component parts.	 Tachometer. 5. Reading and recording of speed using; a. Tachometer for angular speed. b. Anemometer c. D.P. cell d. Orifice Plate etc. 6. Constructional and calibration of anemometer to measure gas and air and tachometer to measure the speed of an engine wheel or shaft. 	
7.	Cathode Ray OscilloscopeInstrument1.Label a given blockdiagram of a CRO, statethe function of each partand advantage of CROIwhen used as a measuringdevice.2.Obtain a spot trace and acontinuous horizontaltrace on a CRO.3.Display a sinusoidalsignal on the screen of aCRO and measure theamplitude, frequency andvoltage.	 The CRO: basic components, working principles, applications and limitation. Methods of obtaining various traces and signals on a CRO. Use of CRO in the measurement of amplitude frequency, voltages etc. Terms used in labeling CRO: Electron Gun, Grid, Focusing Equipment, Deflection system, Screen. Emphasis should be laid on terms used when labeling diagram of a CRO e.g. Electron Gun, Grid, Focusing Equipment. 	Observe safety rules.

CAL		CONTENT	
S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
1.	 <u>Valves</u> Give qualitative definition of pH and state both valves of neutral liquid, alkalinity and acidity with references to the neutral point. describe and service the instrument used for the measurement of pH value and also measure pH values of different solution. 	 Qualitative definition of pH, alkalinity and acidity with references to the neutral point pH values of various materials and solutions. The pH meters; its components, working principle and methods of application. Maintenance of pH meters. 	Measure pH values of different solutions with the aid of the pH meter.
2.	 Hygrometer Define humidity and describe the instrument used for measuring humidity. Give the unity of humidity and measure relative humidity of the air in the laboratory. 	 Definition of humidity, relative humidity ratio (specific humidity). The units of humidity. Instrument used for measuring humidity; basic components. reading and recording of humidity with the aid of hygrometer. 	Measure the relative humidity of the process air in the laboratory with the aid of hygrometer and record the reading.
3.	 Viscometer Define viscosity. Describe and identify the instruments used for measuring viscosity. Measure the viscosity of some liquids and give unit of measurement. 	 Definition of viscosity and it limits. The viscometer; its components, working principle, methods of usage. Reading and recording of the viscosity of solutions using the viscometer – Water, Oil, Lubrication Oil, Fuel Oil etc. 	
4.	Tintometer Explain colour in liquids, name, describe and identify the instrument used for measuring it.	 Types of colour in liquid. The tintometer; its components, principle and application, working principle. 	Measure colour in liquids with the aid of the tintometer and record the readings.
5.	Gas1.Name, describe and identify the instruments used for detection of presence of gases.2.Use, care and maintenance of gas analysers.	 Gas analysers; basic components working principles and method usage. Geiger counter; working principle and applications. Detection of gas presence using gas analysers. Maintenance of gas analysers. 	 Use gas analyser to detect the presence of: a. Carbon dioxide (use the dioxide analyser). b. Oxygen (use oxygen analyser). c. Chlorine (use the chlorine analyser etc).
6.	 Liquid Separation Explain the principles of liquid separation and separate mixture of liquid in their separate vessel by using a centrifuge. Maintain and care of centrifuge. 	 Centrifuges; major components, working principles and usage. Maintenance of centrifuges. 	Separate mixture of liquid in their separate vessel using the centrifuge.
7.	<u>Turbidity</u> 1. Define turbidity.	1. Turbidity, turbidity meter, its major components and usage.	

LABORATORY/PROCESS ANALYTICAL INSTRUMENTS(CIM 15)

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	2. Measure and maintain turbidity meter.	2. Maintenance of turbidity meter.	

www.myschooldist.com

	GRINDING (CME 18)				
S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK		
1.	Grinding Machine	1. Working principles and the			
	1. Explain the working	constructional details of a grinding			
	principles, the	machine:			
	constructional details and	a. Characteristics of a grinding			
	the characteristics of a	machine.			
	grinding machine.	b. Components of a grinding			
	2. Describe the various	machine e.g. grinding wheel,			
	components of a grinding	workable wheel spindle etc.			
-	machine.				
2.	Grinding Operation	1. Grinding operations and methods of			
	1. Identify, state and	grinding.			
	describe the basic types,	2. Types of grinding machine e.g. Hand			
	factures the functions	Grinding, Portable Grinder etc.			
	reatures, the functions	3. Constructional features, functions and			
	and advantages of	limitations of various types of grinders.			
	modern engineering				
	production				
	2 Differentiate between				
	off-hand and precision				
	grinding and state where				
	each type is used				
3	Grinding Machines and	1 How the grinding machine works e g	Calculate the wheel speed		
5.	their Accessories	Hand grinder, centreless grinder	surface/feed speed to suit		
	1 Explain the working	universal grinder etc	wheels and materials being		
	nrinciples of grinding	2 Cutting action of the grinding wheel	ground and state the factors		
	machines the cutting	3 Calculation of the wheel speed using the	governing the choice of		
	action of a grinding wheel	formulae $S = \pi DN$	grinding speed for a grinding		
	and select the cutting	1000	machine		
	speed for a grinding	Where $\pi = 3.142$			
	operation	D = Diameter of wheel in mm			
	2. Describe how to maintain	N = No. of revolution per minute			
	grinding machines.	S = speed of machine.			
		4. Factors governing the choice of grinding			
		speed for a grinding machine.			
	N	5. Maintenance of grinding machines:			
		a. Top up oil level			
		b. Grease the machine etc.			
		6. Use of table in the selection of cutting			
		speed.			
4.	Grinding Wheels	1. Types of grinding wheel and their main			
	Composition and	components.			
	<u>Classification</u>	2. Composition of the various types of			
	1. Describe the composition,	grinding wheel.			
	main components, the	3. Uses of grinding wheel.			
	abrasive, and the bond of	4. Types of abrasive used for grinding			
	grinding wheel.	wheels:			
	2. State the types of abrasive	a. Silicon carbide – grinding of			
	used, the type of work	materials with low tensile strength			
	they are best suited, basic	such as aluminium ceramics etc.			
	classification,	 Aluminium oxide – grinding materiala with high tangila gual 			
	characteristics and factors	materials with high tensile such as			
	to consider in selecting a	neat treated parts.			

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
5.	 good grinding wheel. 3. Explain bond. The types of adhesives used and test a wheel for soundness. 4. Describe the shapes of grinding wheel, their spacing and select appropriate grinding wheel for a job. Safety Explain basic safety rules to be observed in using grinding machines and apply safety 	 Types of adhesives and bond e.g. organic and inaorganic i.e. Vitrafied, silicate, shellac, rubber and resinoid. Classifications of a grinding wheel i.e. Grain size, strength and hardness e.g. Coarse abrasive grain size of 6 – 14. Selection factors e.g. Wet or dry operation, The size of machine, materials to be ground etc. Test for soundness. Safety rules and measures during grinding operation e.g. Wear safety goggles or glasses; Avoid loose clothing; Keep away from grinding wheel in 	
6.	 rules. Surface Grinder Describe and explain the use of surface grinder, its size, component parts, functions and the meaning of common terms used in machine shop. Select appropriate work holding devices for a surface grinder, electromagnetic check and carry out surface grinding operation to angular and cylindrical surfaces. 	 The surface grinder, uses, components work holding devices (accessories), types of abrasives use, operating mode and methods of feed. Terms used in a machine shop and their meaning e.g. Table speeds, Craft Feeds, In Feed, Coolants, Wheel speeds (as abrasive) 	
7.	 <u>Cylindrical Grinder</u> Explain the use of cylindrical grinder in a machine shop. Select appropriate work holding devices for a cylindrical grinder and carry out operation to external surfaces. 	 The cylindrical grinder uses, components work holding devices and accessories: Centres and the clog Work rest in case of a long work piece. Types of abrasives used. Modifications of the cylindrical grinder e.g. Internal and external feed methods. 	
8.	 Centreless Grinder Describe and explain the use of centreless grinder, its size components, specific functions and state its advantages and disadvantages over a cylindrical grinder. Carryout centreless grinding operation, apply the appropriate coolant, grinding wheel, work rest blade and regulating 	 The centreless grinder, its uses, components and their specific functions, work holding devices and types of abrasive used. Feed method. Advantages and disadvantages of centreless grinder compare with other forms of grinder e.g. cylindrical grinder. Cutting and cooling fluids. 	 Student should be able to explain the meaning of: a. Thrufeed grinding. b. Infeed grinding. c. End feed grinding. d. Combination of infeed and thrufeed.

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	wheel.		

www.myschoologist.com

112 ELECTRICAL/ELECTRONIC INSTRUMENT I (CIM 12, 13 & 14)

S/N	TOPICS/OBJECTIVE			CONTENT		ACTIVITIES/REMARK
1.	Grinding Machine		1.	Basic electrical/electronic devices; their	1.	The electrical/electronic
	1.	Describe the		components and working principles e.g.		components and devices
		electrical/electronic		push buttons, relays, reed relays,		should be displayed.
		devices with the aid of		contractors, fuses circuit breakers,	2.	Set up the different
		sketches.		switches and mercury switches.		measuring devices and
	2.	Select and identify	2.	Types of resistance measuring		measure accurately and
		instruments used for		instruments; their major components,		application quantity.
		measuring resistance.		working principles, limitation and degree	3.	NOTE: Health kit
		current and voltage.		of accuracy e.g. Ohmmeter Decade Box		instruments may be used
	3.	Explain the working		Wheatstone Bridge etc		in this exercise
		principles of resistance	3	Types of current measuring instruments.		
		measuring instruments		their major components, working		
		current measuring devices		principles, limitations and degree of		
		and voltage measuring		accuracy e.g. Galvanometer Ammeter		
		instruments		etc.		
	4	Explain the errors	4.	Types of voltage measuring instruments.		
		associated with measuring		their major components working		
		instruments and the terms		principles, limitations and degree of		
		applied to manipulation of		accuracy e.g. Voltmeter, potentionmeter.		
		meter ranges		multimeter etc.		
	5.	Set up given resistance	5.	Errors and degree of accuracy: - errors		
	0.	measuring instruments	0.	associated with smeasuring instruments		
		current measuring		e.g. Zero error. Parallax. Range etc.		
		instruments voltage	6	The use of shunts and multipliers in the		
		measuring instrument and	0.	manipulation of meter ranges		
		use them to measure	7	The use of current/voltage measuring		
		resistance A C and D C	/.	instruments in the measurement of A C		
		of both current and		and D.C. currents and voltage		
		voltages		respectively		
	6	Dismantle disassemble		lespeenvery.		
	0.	and repair meter note the				
		relative positions of parts				
		and taking into				
		consideration the use of				
		shunts and multipliers				
2	Те	merature	1	Resistance thermometer, components	Dei	form experiments to
2.	1	Identify the materials	1.	materials working principles range of	det	ermine the temperature
	1.	used for resistance		temperature construction materials should	cor	efficient of resistance for
		thermometer and explain		be platinum nickel copper	dif	ferent metals
		its working principle the	2	Relationship between temperature and	un	ferent metals.
		relationship between	2.	resistance as applied to resistance		
		temperature and		thermometer fundamental interval and		
		resistance and the range		temperature coefficient of resistance		
		of temperature that can be	3	Simple calculations on temperature		
		measured by resistance	5.	coefficient using the formulae.		
		thermometer		$R_{0} = RT - Rt$		
	2	State the fundamental		(T_t) Rt		
	∠.	interval and express		Where $RO = Temperature coefficient:$		
		thermometer coefficient		RT = Resistance at T temperature		
		of resistance over the		Rt = Resistance at temperature		
		interval	4	Experimental determination of		
1			1	r · · · · · · · · · · · · · · · · · · ·		

ELECTRICAL/ELECTRONIC INSTRUMENT I (CIM 12)

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
		temperature coefficient of resistance.	
3.	 Thermocouple 1. Name and identify the materials used for thermocouple, example for the combination of these materials and indicate the temperature. 2. Explain the principles of thermocouple, the terms related to thermocouple and how the e.m.f. generated by thermocouple can be boosted for industrial use 	 temperature coefficient of resistance. Thermocouples; basic components, materials, e.g. Platinum, radium etc. Working principles, range of temperature. Electromotive force (e.m.f.); the relationship between e.m.f that can be generated by a thermocouple. Methods for boosting the e.m.f. generated by a thermocouple. The wheatstone bridge and how it is used to measure the change in resistance with temperature. Terms related to thermocouple; a. Hot junction b. Cold junction 	Perform an experiment to show the relationship between thermal e.m.f and temperature.
	stating the equipment	c. Cold junction compensation.	
4	Time Measuring Devices	1 Types of instrument for measuring time	Trouble-shoot given timers to
	 Identify instruments used for the measurement of time, state the unit of time and explain the terms related to time measuring devices. Explain the working principles of R.C timers and electronic times. Install given timers to appropriate systems, set it to achieve defined objectives according to instruction, read and record time with given timers indicating the reading unit on timer. 	 Types of instantation for inclusioning time. Working principles of time measuring instrument. Reading and recording of time with given time. Unit of time and the basic terms used e.g. On/off i.e. something is on when it is engaged and off when it is disengaged. Reset i.e. Reactivating of the timer from off position to on position. Time delay i.e. the period of disengagement between two successive periods of engagement. Repeat time i.e. Time of complete cycle of events. Installation of timers. Trouble shooting and rectification of faults. 	locate and rectify faults.
5.	 Electrical Component Indicate and identify electrical components, their conventional symbols, physical conditions and necessary precautions to be taken during repair and construction. Explain the principles of operation and state basic application of each component. Draw labeled schematic diagrams of rectifier circuits, filter circuits, explain their operational principles and their 	 Electrical components and their conventional symbols e.g. Triode, pentode, thermionic diode, Zener diode, transistor etc, principles of operation and applications. Rectifiers; rectifier circuit such as half wave, full wave, bridge rectifier, working principles, functions, advantages and disadvantages. Power supply unit; basic components, working principles, applications and power supply unit construction incorporating: Transformer Bridge rectifier L.C. filter circuit Zener diode. 	 Trouble shoot a given power supply unit to find and rectify faults. Observe necessary safety precautions.

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	 purpose in power suppliers. 4. The use of oscilloscope in checking voltage wave form at specific stages e.g. a. Primary tappings of the transformer. b. Secondary tappings of the transformer. c. Input of the filter d. Across the Zener diode. 5. Trouble shooting in power supply units and methods of rectification. 	 voltage wave form at specific stages e.g. a. Primary tappings of the transformer. b. Secondary tappings of the transformer c. Input of the filter d. Across the Zener diode. 5. Trouble shooting in power supply units and methods of rectification.	

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
1.	Watt Meters1. Identify the instruments used for power and energy measurement and also read and record powers and energy from appropriate meters.2. Explain the working principles and construction of the A.C. and D.C. wattmeter and distinguish between them.	 Power/energy measuring instruments e.g. Wattmeter, watt hour demand meter, basic components, construction and working principles. A.C. and D.C. wattmeter; basic components and working principles e.g. kilowatt hour. Reading and recording of power and energy. 	Read and record power and energy from appropriate smeter.
2.	 Frequency Measuring Device 1. Explain the functions and working principles of a signal generators, use it to produce wave-forms on the oscilloscope. 2. Identify the instruments used for measuring frequency, use them to measure frequency of wave form and define the terms related to wave form with simple calculation involving the terms. 3. Explain the working principles of the cathode ray tube and oscilloscope with the aid of labeled sketches. 4. Apply the oscilloscospe for measuring frequency and amplitude and calculate r.m.s. voltage, average value and period from wave-form result. 	 Signal generators, basic components, working principle and application. Terms used in defining wave forms e.g. Frequency, wave length, pitch, period, amplitude, resonance, bandwidth and simple calculations involving the terms. Frequency measuring devices, basic component working principles and application. NOTE: Oscilloscope carries very high voltages and therefore should be handled with necessary precautions. 	Use frequency meter and oscilloscope to measure frequency of wave form and compare the results.
3.	Measuring Level Identify and describe the working principles of level measuring instrument.	 Level measuring instrument e.g. capacitance probe resistive probe electronic DP cell load cells basic components, working principles e: dismantling and cleaning the parts; assembling and calibrating the instruments. electrical/Electronic. 	Dismantle level measuring devices to study their basic components and exact position, and cleaning of the parts.
4.	Electronic Amplifiers1. Explain the working principles, construction functions of component	 The electronic amplifiers; its circuit, components, working principles, applications and limitations. Methods of feeding signals into amplifier. 	Feed in signal into an amplifier with a signal generator and monitor the output with an oscilloscope,

ELECTRICAL/ELECTRONIC INSTRUMENT I (CIM 12)

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
	 parts of amplifiers, their uses and describe the characteristics of different types of amplifiers. 2. Draw labeled schematic diagram of simple amplifier circuit using the thermionic valve and transistors. 3. Feed in signal into amplifier with a signal generator and compare in- put signal with the output signal. 4. Test the amplifiers for proper operations by feeding signal into it and measure voltages at various points of a given amplifier. 	 Type of amplifiers; basic characteristics and uses e.g. audio amplifiers, power amplifiers, operational amplifiers. Reading and recording of voltage at various parts of a given amplifiers. Determination of the gain of the amplifier. 	compare the input signal with the output signal and determine the gain of the amplifier using the formulae. Gain = <u>Output Voltage</u> Input Voltage
5.	Electrical electronic <u>Transducers</u> Name, identify and explain the function of the different types of transducers and state their application and standard range of variable in them.	 Transducers; working principles and functions. Types of transducers and their applications. a. Voltage to pressure (E/P) b. Pressure to current (P/I) c. Voltage to current (E/I) Standard range of variable in the transducers e.g. a. E/P-10v/0.2kg/CM2-1kg/Cm2 b. I/P mA-20mA/0.2Kg/Cm2-Cm2- 1kg/Cm2 c. E/10-10v/mA-20mA 	
6.	Electro-Magnetic Solenoid Explain the principle of the operation of electromagnet, solenoid and give example of the use of the solenoid instrumentation.	 The electromagnetic solenoid: working components, principles and operations, applications and limitations. Use of solenoid in instrumentation e.g. a. Opening and closing of solenoid values. b. Control valves. c. Control of power cylinders etc. 	

S/N	TOPICS/OBJECTIVE	CONTENT	ACTIVITIES/REMARK
<u>S/N</u> 1.	 TOPICS/OBJECTIVE <u>Automatic Control</u> 1. Describe and explain the meaning of the terms used in automatic controls, the modes of control and actions. 2. State and define the deviation, the equation for proportional control action and draw graph to show the relationship between output (Po) and deviation (d) 	 CONTENT Automatic control terms; their meaning and usages, e.g. control, regulate, signal, feedback, feed forward, primary, primary element, secondary element, on/off, final control element etc. Modes of control e.g. a. open loop b. close loop c. two step control d. multi step control Use of rigs to demonstrate control modes. Definition of deviation as (Po-Pi) i.e. change in output (Po minus change in input (Pi) Equation for proportional control action i.e. Po – Kd Where Po -= change in output D = deviation K = a factor = po/d. Graph of the relationship between output (Po) and deviation (d) Use rigs to demonstrate each of the control 	ACTIVITIES/REMARK Modes, taking note of the difference between individual modes.
2.	 <u>Control Action</u> Use rigs to demonstrate the control actions and explain both integral action and condition which will necessitate the use of control actions. Draw graph to show the effect of integral action when used in conjunction with proportional control action. 	 Control action viz: proportional action (P) integral action (Reset) (I) derivation action (Rate) (D) P + 1 P + 1 + D Simple equation and graphs of control action and the need for control action. 	 Emphasize the meaning of integral action and the conditions in a control system which will necessitate each of the control actions. Draw graph to show the effect of integral action when used in conjunction with proportional control action.
3.	 Control elements and system State and describe control elements, their functions in control system and explain with a labeled sketch the operation of control element. Calibrate and carry out repairs on control elements taking into consideration the safety precautions involved. 	 Control Elements their functions and working principles e.g. Relay, Rest Below, Flapper and Nozzle etc. Maintenance of control elements calibration of control elements and system e.g. Receiver, Transmitters (Pneumatic & Electronic). Setting up control loops for the control of: a. Temperature b. Flow c. Level d. Pressure e. Speed. 	Set up control loops involving the use of some of the control elements to control the following: a. Temperature b. Flow c. Level d. Pressure e. Speed

AUTOMATIC CONTROLS (CIM – 14)